```
e c e
                                   e
                                        a e a
                                                         e c
    e a
                                                    ece (
ea e
                a
                         e
                              e
                                   a
                                          a
      ca
                       e acc e
                                         ce
                                                     e
                                                               a
                                                                   e a e
               ‡,
                                     ‡†, -
                         &
            e e ca e e ca c e ce, e ,10003, a a e a e a e ce, a 210016, e a e e ce ce, ve , ,3684 -5305,
```

(Received 18 2015, accepted 8 a a 2016, first published online 18 2016)

c a e c a e ve a a e ve a e e e a a e a a e e e a a e a a e e e e a a e a a e e e e a a e a a e a e a e a e a a e a e a e a e a a e a e a e a e a e a a e a e a e a a e a c e e a e a-cea cac, a e e e a e e accee a a-cea cacce a e e. e a e a e, e a e a a a e accee e acce a e e a e e a e e e e e e e e e e . a e a e, - e, acc e ce , e a a e c e (), a e a e.

ca e

e- c e. a e

1. I c

e,a e a e e e e e vae, c e e a cc a e e c a-ea accea-ece (e. . a et al. 2008, e & e, 200, ea a et al. 2012, a et al. 2012, 2013, acca et al. 2013), c a a a a a a e e cea c a e, e cea c a a ce a e ec c ev e e (, 1 , a *et al.* 200 , a *et al.* & e, 2003, a et al. 200, ea ce, 2014). a ece e , e & e (2011) c a - e e a . c e a a - c e , - cea e, e, a - c e (), v ca c a c a acc e a. eee e e c e , ea ce (2014) v e -

e & a , 2012). ea e a , c e e e a ec e , ev-e a e ave ee e e ve e a e ea , c , , e ea e , a e a a a a e e (a , 1 3, a et al. 2003, a et al. 2003, a et al. 200 a) (.1). a - e ave ee ca e e e e, e e- a e c a ca , e c , e c e

a e, .e. - cea - e

e e - e e e c e

e e. e - cea e v e - e, - ea -

a c - a e, ac -a c a e a

(,e ö, aa & a, 1 3, a.

& e, 2000, e et al. 2002, a et al. 2004,

200 a) (. 1a). e a e e e e a e

e a e c, ca e ev e (a et al. 200 a,b, e ,

2. R a , b a a

 e
 a e a
 e c
 e e e e e e
 e

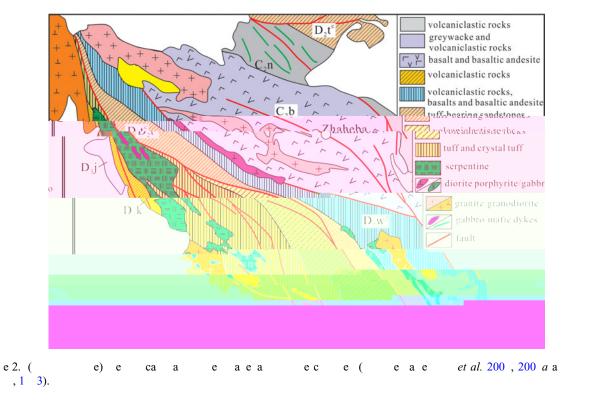
 e e
 e c
 e a e a
 a a
 e
 e

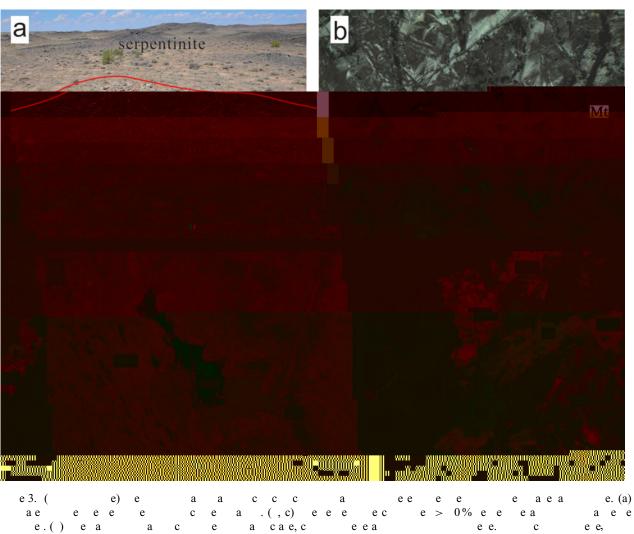
 e
 ,
 c
 e a
 e
 e
 a

 e e a ec (1, 2). e a c c e e e e, c a e, a a c a e c ava a a ca a e. e c a e c e a a e e a c a ,a cc a a c e e ve eve a e e e c a e e e e ae ee. e e a e e e e e c e a e - e ve (.3a). e e va e e a ea 15 c a e c a e e e e e c e e e a c -a e e e e e e ev a aacaece ea ece (.2, ee e c). cca a a a e 1 e a e a 1 ca e ee e e e e e. v e e a a e e e c a e e e e e e -

a e e e e e e e e a e - c e e a e a e (e. . a et al. 2013). e c v e e e a e a e e a e e a e e a e e a e a a cae(40 0%)a c ee(30 50%)a e a e e (5 10%) a cca a v e (.3). cce e a c e e e a c e e c ea ae e a e cae a e ca e a e a a - e a a - e a a - e a a - e a a - e c a a - e c a a - e c a a - e c - evea -ec . eaaca e cv ca c e e a e e ce a ca v e e e e ev a a e e a ()a e aa a ()a e e ev a a e a a () (a et al. 2006). e ea e ev a e e ce a e a v ca ca c e e a aa a c ac e ev a a a a. e a v e ee e e a c a c a , c c e a c a c, v ca c a c c a - ea a e (.2). e e e e, a a ca a e e c a ve a a c a e c ava a e ve , a e ca ca ea e a ea . aacae c

a e e,


e e,


cae,

a

е,

e e

a a e v ca c e e a aaae e ve ae c e e e.

3. A a ca c

3.a. Z c U Pb a a H O a a

c e e e a a e a a a e (2013 01, 46° 32 51 , 8° 2 4) a a a e (2013 02, 46° 33 2 , 8° 2 36) c ece e ae e e e e . c e a a a ca e c ve a a e c a e ec e . c a e e e a - c e e a c a c c e. c a a c eeeceaa ee e e , c ee e e ec ec ec a a a e ec e c a a e a ca e ce ce () a e evea e e a c e . c a e a e c eeaae eaeaa cve c e a a a ec e (- -) et al. (2011). e e e e a a e e a e a e a e e a e e a e e a e c a e e - e - a a a (*et al.* 2010) a (,2003). e e e e - aaa (et al. a e a e e a e 5% c e ce eve. c a e a a a e c a e e e eea aeaaela e e e a a e a a e 2, e ec ve , ava - a e a .// a .ca e. / e . et al. (2010a). ea e 18 / 16 a e e e ce a a a δ^{18} va e 5.31‰ (et al. 2010*b*). e ea e e e c a - a - a e c e a e e ea δ^{18} 5.44 ± 0.21 ‰ (2), c c e e e e va e $5.4 \pm 0.2\%$ (et al. 2013). c e caaae e e eea aea ae3avaaea .// a .ca e. / e .

3.b. M a a a

ea c e 20 c e. e e e - a ve e a ca a a a e e e - e e a a e a a e 4 a 5 ava a e a .// a .ca e. / e .

3.c. W - c a a

e- c a - a ace-e e c e e a a e a a 100e e a a ca ce e e c e et al. (2004). a ca ec e e a e e a 2%. ace e e e e a a e a e e c e 6000 - ce e e c e et al. (2004). 50
a e e e eac a e e e ve
- e e e a a a c a e
e e e a a a c a e ee e c . e a a -1, -2 a -2, a e e e a a a a -1a -3, e e e ca a e e e c ce a ea e a e. - a a ca ec ee e a e e a 3 5%. ea a ca e a e e a e 1. a e c ea e e e e -) a e ae e a a e e-ece , e ece , ee cae cece. e ea e ce e a ee ea e 8 $/^{86}$ ave a e a e e 0. 10288 e 8 a a a 0. 0506 -1, a e^{143} /144 ave a e a e = 0.512104 -

4. A a ca

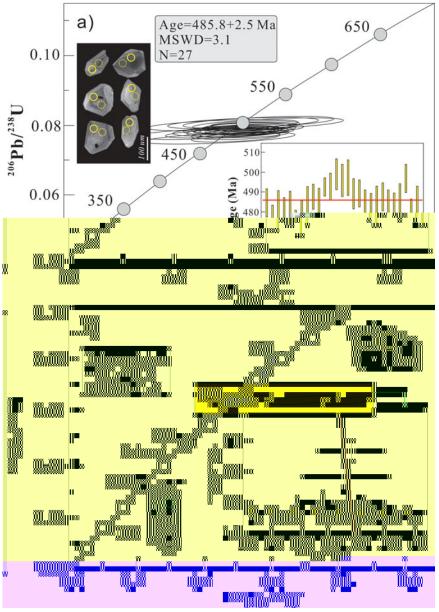
4.a. Z c U Pb a

1 a 0.5126 1 -1. e a a ca e a

cac ae aa ee ae e a e 2.

a e l.	ece cac	e e e	e, c a e a	aa ea	e a e c	e				
a e	2013 01-1	2013 01-3	20132 01-4	2013 01-5	2013 01-6	2013 01-	2013 01-8	2013 01 1	2013 01 2	2013 01 4
					Major element	ts (%)				_
2	38. 0	48.20	3 .41	38.62	3 .22	3 .82	3 .05	4 .22	46.48	51.2
2	0.05	0.20	0.05	0.05	0.04	0.05	0.04	0.14	0.12	0.2
2 3	0.61	1. 6	1.04	0.6	0. 0	0. 4	0. 0	18.28	1 .64	1 .33
e_2 3	8.44	4.68	.8	.36	.5	.16	.84	3.6	3.24	3.8
	0.08	0.10	0.11	0.11	0.11	0.0	0.11	0.08	0.0	0.08
	38.21	24.5	38.82	3 .8	3 .0	3 .31	38.44	10.04	.03	5.8
a	0.12	15.42	0.15	0.14	0.2	0.10	0.145 24.1	(10.86180.08) 810 5	-8.1431 () () 5.4 1 3.5 4.12 a

e


	0.005	0.064	0.008	0.005	0.00	0.003	0.003	0.051	0.044	0.222
	0.021	0.34	0.044	0.042	0.0 2	0.031	0.033	0.310	0.25	1.450
	0.004	0.04	0.00	0.008	0.011	0.005	0.005	0.04	0.043	0.21
	0.011	0.232	0.036	0.044	0.012	0.034	0.008	0.123	0.0	0. 3
	0.0	0.036	0.038	0.03	0.068	0.026	0.025	0.046	0.031	0.06
	0.268	1. 10	6.600	1.880	0. 3	0.233	1.150	1.5 0	0.516	0.1 5
	0.406	0.0 2	0.12	0.112	0.0	0.1	0.054	0.168	0.1 1	0.6 5
	0.046	0.034	0.014	0.028	0.050	0.030	0.010	0.050	0.02	0.130
	0.1 1	0.144	0.203	0.364	0.042	0.0 4	0.0	0.066	0.042	0.0 3
e	2013 01 5	2013 01 6	2013 01	2013 01 8	2013 01	2013 03 2	2013 03 3	2013 03 4	2013 03 5	2013 01 3
е е			(1)	(1)	(1)	(1)	(1)	(1)	(1)	(2)
	4 1	45.0	40	52.1	Major elements		50.54	50.50	51.00	52.2
2	4 .1	45.8	48.	53.1	51. 1	50.40	50.54	50.52	51.22	52.3
	0.34	0.15	1.40	1.24	1.31	1. 0	1.63	1.31	1.1	0.33
3	18.	1 .58	16.5	16.1	15. 3	15.8	16. 6	15.55	15.48	1 .61
3	4.52	3.34	.88	.11	.43	.0	.50	.42	.82	3.44
	0.0	0.08	0.11	0.10	0.11	0.13	0.11	0.14	0.12	0.0
	6.8	.42	4.80	4.28	4.41	5.8	3.2	6.06	.14	4.88
	11.03 4.86	12.61	6.22	5. 5	6.3	6. 5 4.52	4.52 .31	.4	8.26	8. 0
2		.38	8. 2	8.3	8.00			4.80	4.08	.11
5	0.13 0.04	0.11 0.02	0.3 0.62	0.31 0.62	0.42 0.65	2.04 0. 4	0.33 0.6	1.2 0.4	2.03 0.44	0.1 0.04
3	3. 2	3.26	4.24	2.54	2. 3	2.2	5.14	2.65	1. 3	2.
	. 5	.82	. 6	. 0	.4	.40	.81	.6	.68	_
	4. 8	.62 .4	.11	8. 0	8.42	6.56	.64	6.0	6.11	. 1 .2
#	5	81	55	54	54	56	41	56	64	4
T	3	61	33	34	Trace elements (p		71	30	04	7
	.0	4. 5	1.16	1.12	1.4	.08	40.4	5.2	6.82	5. 1
	0.22	0.135	1.284	1.683	1.316	1. 53	1.034	1.100	0.5 5	0.62
	25.0	23.8	18.6	1 .5	1 .5	.5	1 .2	25.2	18.	1 .0
	118	83.	186	166	1 2	22	22	254	18	5.
	34.	163	60.5	62.6	64.1	116	18.	0.	203	23.
	24.2	21.6	26.	23.6	24.6	2 .8	28.5	28.0	28.0	16.4
	4.	1 5	63.6	50.	51.4	6.8	2 .	5 .3	132	1.1

		1	
a	e	1.	e

a e	2013 01 11	2013 02 1	2013 02 2	2013 03 1	2013 03 6	2013 01 10	04 06	04 24	04 2	03 1
c e	(2)	(2)	(2)	(1)	(1)	(2)	(1)	(1)	(1)	(1)
		2.5	40.4	Trace elem	ents (ppm)		,	,	,	,
	1 .4	36.	42.4	26.0	32.4	1.	/	/	/	/
e	0.3 5	0.153	0.358	1.1 8	0. 4	0.468	12.4	20.5	,	20.2
c	32.5	33.2	34.5	25.1	26.3	32.1	13.4	20.5	1.	20.3
	1 4	203	21	33	341	1 5	144	184	214	265
	56.5	44.2	4 .8	1 .8	22.2	53.8	158	162	214	265
	34.	3 .5	38.3	23.1	24.8	33.8	20.6	30.	28.	20.2
	66.4	84.6	6.4	25.4	2 .1	66.6	8 .1	114	5.5	.02
	6.4	236.4	256.	205.4	208.	114.20	/	/	/	/
	48.0	44.1	4 .0	4.	103	44.1	/	/	/	/
a	12.0	11.1	11.2	14.	13.6	12.0	4	10.1	22.0	1 2
	0.58	1.420	1.0 0	3.130	3.2 0	0.583	4.	18.1	22.0	1 .2
	12.0	1 50	5	2 0 21.1	24	686	12.2	831	1118	6
	13.0	13.0	13.2		22.	12.5	13.2	13.2	14.	20.1
	54.	42.3	41.5	144	154	52.8	243	133	164	151
	1.2 0.025	0.84 0.030	0.855 0.02	11.315 0.051	11. 85 0.052	1.25 0.028	20.2	12.	21.	12.2
	0.381	0.030		1.560	1.450	0.028	,	/	/	,
	0.288	1. 20	0.328 1.030	0.365	0.406	0.336	/	/	/	/,
	0.288	3 2	346	825	50	84.3	,	/	/	,
a	10. 0	.840	.610	26.40	26.80	10.50	30.6	32.2	40.1	26.4
a	23.00	18. 0	18.40	51.50	54. 0	22.30	5 .8	62.	82.3	52.5
e	23.00	2.520	2.510	5. 50	6.180	2.6 0	5 .8 6.	.84	10.5	6.4
	11.80	11. 0	11.60	22.30	24.30	11.60	2 .5	31.2	43.1	24.4
	2.540	2. 00	2.6 0	4.4 0	4. 00	2.3 0	4.5	5.28	6.8	4.85
	0.8 6	0. 18	0. 0	1.163	1.25	0.883	1.45	1.58	2.0	1.03
	2.480	2.813	2. 54	4.14	4.46	2.522	3.56	4.01	5.35	4.23
	0.3 6	0.38	0.3	0.612	0.660	0.384	0.4	0.54	0.64	0.63
	2.180	2.150	2.220	3.420	3.680	2.130	2.5	2.	3.24	3. 5
	0.468	0.446	0.444	0. 28	0. 5	0.468	0.4	0.52	0.5	0. 8
	1.350	1.230	1.240	2.120	2.2 0	1.310	1.32	1.3	1.45	2.25
	0.1 0	0.16	0.1 5	0.304	0.328	0.1 4	0.1	0.2	0.2	0.34
	1.210	1.050	1.120	1. 60	2.110	1.210	1.25	1.23	1.24	2.13
	0.1 4	0.164	0.165	0.2 1	0.323	0.1 3	0.20	0.1	0.1	0.34
	1.3 0	0. 41	1.040	3.2 0	3.510	1.460	5.3	3.2	4.16	3. 2
a	0.084	0.062	0.051	0.5	0.644	0.0	1.35	0.68	1.16	0.68
u	0.151	2.0	1.50	2. 5	1.88	0.33	/	/	/	/
	0.131	0.206	0.200	45.20	35.10	0.41	8.13	8.0	4.18	21.06
	1. 0	0. 61	0. 1	8.860	.2 0	1. 80	4.50	2.63	3.20	.41
	0.500	0.304	0.302	2.830	3.480	0.501	1.	0.6	1.46	2.5
	0.500	0.501	0.502	2.030	3.400	0.501	1.	0.0	1.70	2.5

e. e e e, a , a a , a a ca e e, / e e e c . a a a e 04 06, 04 26, 04 2 a 04 1 a e et al. (200 a).

2013 01 3 a a (2) 0.36 3 2 0.002 0. 04030(2) 0. 04015 2.4 10.8 0.13 4 0.51283 (40) 0.5124 4 6. 2013 01 10 a a (2) 0.58 686 0.0024 0. 04 5 (23) 0. 04 45 2.3 11.6 0.1235 0.51280 (43) 0.512486 . 2013 03 1 a a (1) 3.13 2 0 0.0335 0. 06324(20) 0. 06133 4.4 22.3 0.121 0.512533(4) 0.512214 1.3 2013 03 2 a a (1) 2.8 1320 0.0063 0. 0428 (20) 0. 04255 4. 5 28.6 0.1046 0.512 1 (51) 0.512445 6.3 2013 03 3 a a (1) 8.06 516 0.0452 0. 05368(43) 0. 05111 5. 36. 0.0 8 0.512 0 (30) 0.512450 6.3	a e 2	•	сс	e	a a	e aeaa	a ea						
2013 01 10 a a (2) 0.58 686 0.0024 0. 04 5 (23) 0. 04 45 2.3 11.6 0.1235 0.51280 (43) 0.512486 . 2013 03 1 a a (1) 3.13 2 0 0.0335 0. 06324(20) 0. 06133 4.4 22.3 0.121 0.512533(4) 0.512214 1.3 2013 03 2 a a (1) 2.8 1320 0.0063 0. 0428 (20) 0. 04255 4. 5 28.6 0.1046 0.512 1 (51) 0.512445 6.3 2013 03 3 a a (1) 8.06 516 0.0452 0. 05368(43) 0. 05111 5. 36. 0.0 8 0.512 0 (30) 0.512450 6.3	a e		c e	() ()	8 / 86	'	(⁸ / 86)	()	()	14 / 144		,	ε (t)
2013 03 4 4 4 1 1 .03 1400 0.010 0. 0422 (31) 0. 04120 4.33 24.3 0.1123 0.312003(33) 0.31230	2013 2013 2013	01 10 03 1 03 2	a a (2) a a (1) a a (1)	0.58 686 3.13 2 0 2.8 1320	0.0024 0.0335 0.0063 0.0452	0. 04 5 (23) 0. 06324(20) 0. 0428 (20) 0. 05368(43)	0. 04 45 0. 06133 0. 04255 0. 05111	2.3 4.4 4. 5 5.	11.6 22.3 28.6 36.	0.1235 0.121 0.1046 0.0 8	0.51280 (43) 0.512533(4) 0.512 1 (51) 0.512 0 (30)	0.512486 0.512214 0.512445 0.512450	.1 1.8 6.3

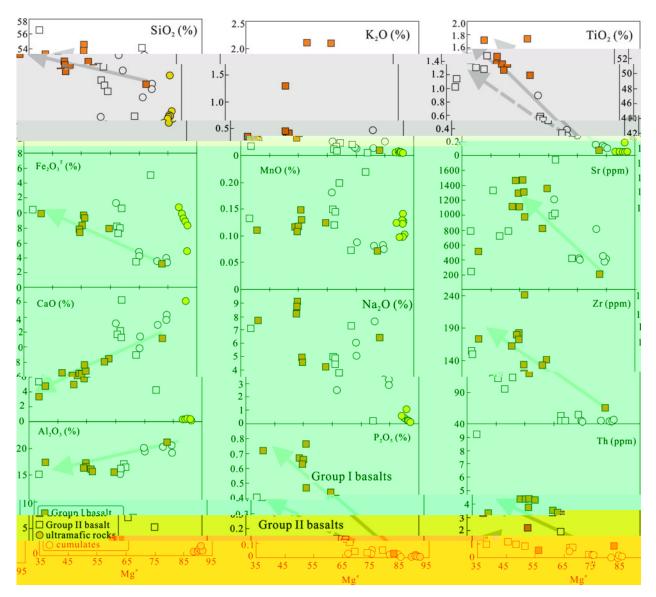
1 3. . 4a, cca e eae ca 1) e a e e , acc e (a et al. 2003). a e a e a e a e a e c a e, a 100 200 μ e (2)ea

4.b. M a c

4.b.1. Spinel composition

4.b.2. Pyroxene compositions

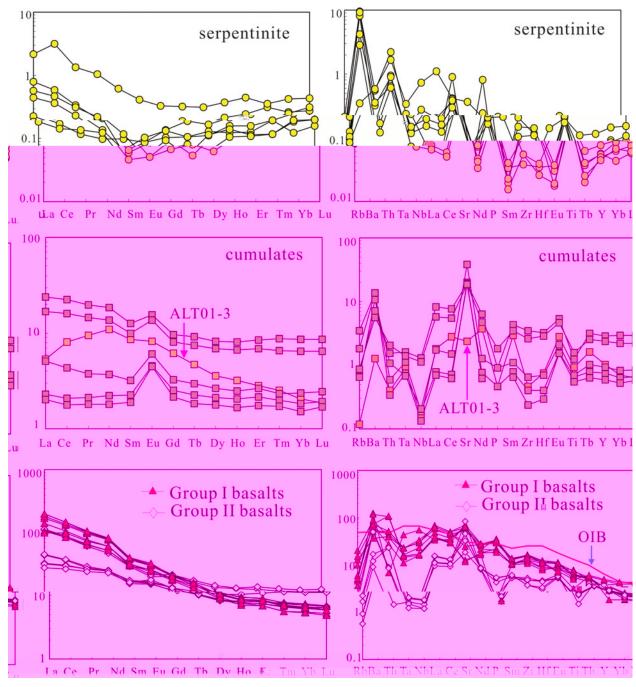
4.c. W - c a c


4.c.1. Serpentinites and cumulates

e e e e ave ve () $(>12\%, c c e e e e ve e e - a)a _2(e a 40\%), _2 3(e a 1.0\%), _2 (0.03 0.06\%), a_2 (0.04 0.2\%)a _2(0.04 0.05\%). a e_2 3 c -$

. e a ee e e ve (.6). e ave ea ve (3 103) a c e (5 8) (a e 1). e (> 12%) a a₂, ₂ a a c e e c-a e a a e a c a e e e a e a a e a c a e e e c e e a ee e (a, a a)a e a e a e e e e e () (e. . , a a). eve, ce e e a e c e -, ₂ ₃, e₂ ₃ a ₂, e e a ee a ca eeeee e e a a ea . , ee
ee e ca e e e c e e e . e e e e ave ve a a e ea ee e () a - e - e ee e () c e (a e 1). eve, e c e - a e c e- a e a e
.), a ea e a e
e c e e (ea ce, 2014, e c e
e ve a e va e a e & c-, 1 8). e a c c a e ave ₂ a 45.8 % 51.2 %, a a va a e e_{2 3} (3.24 4.68%), _{2 3} (18.3 1 .6%, e ce a e 2013 01-3), a (.54 15.42%), ₂

(0.12 0.34%), a₂ (2. 1 .38%, e ce a e 2013 01-3) a ₂ (0.11 0.46%) c - a ac a a / c a e ec (a e 1).

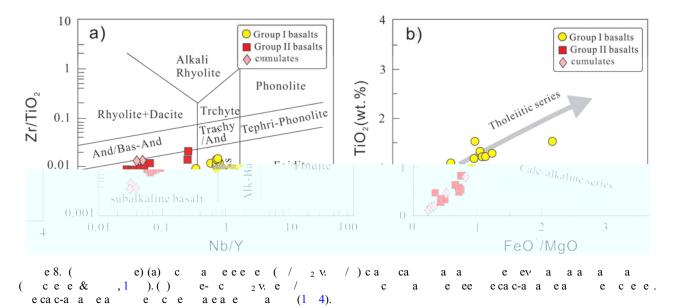

e6. (e) a e va a a a e a a e a e (.v. 2, a2, 2, 2, e2 3, 2 3, a , , a) (a e e e e et al. 200 a a e a c e e a e e e).

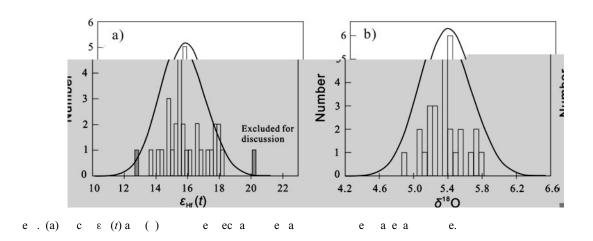
c e a e ee ca e e e e a e e ve . 6). e c a e ave va a e c -5 41 , a a c a e a e e $e ((a/) = 1.3 \ 2.8) a$) e c a e (/ = 1.1 2.2). ve a ce e 2013 01-3 a e e ee ec. e e e e e - ec a e e e vec a eee e) a e (.), a e c ae aecaace e $a \quad a \quad e \quad (\quad / \quad a = 0.2 \quad 0.4)$ e a ve a e ve a a,

4.c.2. Basalts

e a a a a e c a a ave ₂ a 43.15% 5 .65% (e a 52%,

a e 1). va a e e c a eee e e e e / c a ca V. a a ca e v e 1 (1) a 2 (2). a a e e 2 a e , a e e ee a a a e a e 1 a 2 e . 8a). e e / e v. ₂ a a (.8). aeaa, e 2, e₂ 3, 2 5, 2, , 2 3 ec ea e c ea e e a a e 1 aa. ec ea e a a , _{2 5}, c ea e a ecea . (. 6). e 1 aa ave ea ve 124 205 a a ave 50 60 a 1 a a ave e eva e (a/ e ee 10 a 30 (a ve 20) a eae ea ve

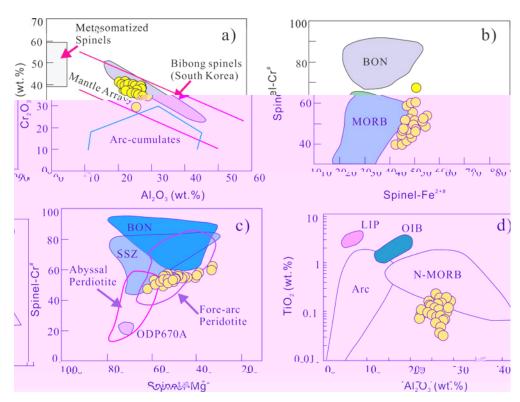



e.(e) e- a e a e a ve a e- a e c a e ace-e e e e e a a e e e e a a e a e a e ev a a a . e a a va e a e & c $(1\ 8\)$.

a e (/ = 0.01.14a a a ave ea ve 6 a $= 1.02 \ 1.21) (.).$ ve a e (a e -е е е aa, e va a e e a-0.44a e / a a aece a ve e a ae. e 2 a a ave a eee e c e a ce e a ve a a a -/ a a (~ 0.11) . e e ve ea e e e e ca a c a a (.).

4. . W - c S N a c H O

a e cc e
e e e e a ve a a a e e a e 2. 1 a a
a 2 a a ave a cc
. e a a a a e e 8 /86 a(0.0024 0.0452) a 8 /86 a (0.04030
0.05368), c e e a ve e e
a 8 /86 a (0.04015 0.05111, e ce
2013 03 1). e ave 14 /144 a e ee
0.0 8 a 0.13 4 a 143 /144 a e ee
0.512 0 a 0.51283 a ea c a ɛ (t) va e +6.3 + .5 (e ce 2013 03 1 a
+1.8).

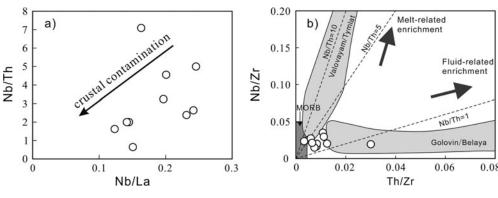



5. D c

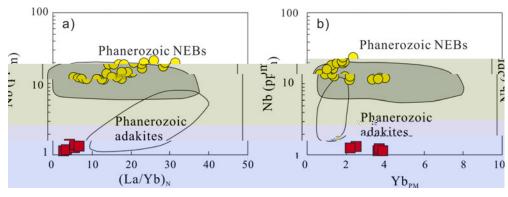
e c e c a e e (2013 01) c e e (e e a a e a a e a a e a e a .// a .ca e. / e , . a), 3 (= 485 a) a20. 13 e a e a e 285 a 588 a. e e ϵ (t) (> 16) a e a e a e e ea , a a ec a a a e a e e c e e a ε (t), eaa e ea a 15. . e ea a ea $e \delta^{18}$ va e a e4. 1‰ 5. 3‰, a). a a (. ave e e e c сс a ea δ^{18} c va e $5.3 \pm 0.23 \%$ \sim 400 a c e a ε (t) va e a a e a e e ee 1.4 a e a e a 680 a e- a e 20 e e c ave va a e e c e ea e e ce a e et al. (2008).

5.a. T b Z a ba a e e c cce c ev ca c c , ec a e a e e e ace a e a c. 486 a a ava e a 401 a, e ec ve . e a e e c c e e ev e $(503 \pm$ a) a a ea e ec e a e a $(416 \pm 3 \ a)$ e ea e a e a e c e (a a 2012, a et al. 200 b, .1). e v ca c ee ce (401 a) a e c a e (486 a) (e e e e) a e c ea a c e a ev ca c e e ce a e a e a e. e ev e e c a e e v ca c e e ce (, 1 a **3**). cc e a e e e ea e e e e e (1), ee ca e v e ee a e, .e. e a a a e a ca a

a e (500 480 a) (a et al. 2003, et al. 2015,), e ev a e a e c c a e (430 400 a) (a et al. 200 b, 2014 a e e e c e e e) a e a e e c - e (3 0 350 a) (a et al. 2003, et al. 2006).



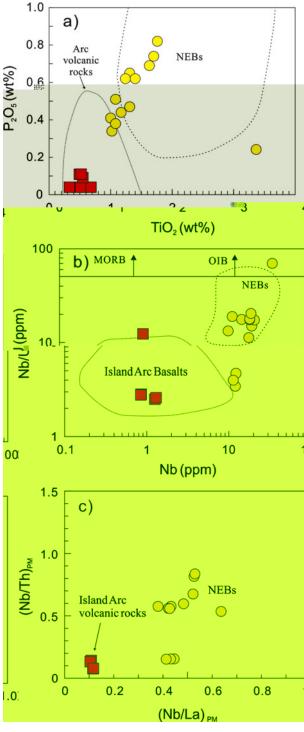
e a c ca e c ac a a e ve e ee a e e ce (- e). e ea e a ec aec a e a a a e e ee e e a e e c a e ce, e ac ee e c e e. e a, a e 5c, e c e e e c aee--eae e . e $_2$ $_3$ v. a a , a e a a e c e e e ve a a ea e ee a ac -a c a $_{2}/100$ a a (.11a). e ac e e ve a e ee e e a e (.11). e a e a c c ca a e a e a a a e a e e e c e (.). eeae е. e c a c a a a e , a c a


e e . eve, ee c ea / a a / a (.12a), c e ca c a c a a . e ve, e e a e a ec a a . е е e e c - e a e e a e e e - e a e (.12). e e e, e a e a ve a a e e c e e e e e a e a e a e c - e a e ece a e a e . *et al.* (2002) ave e a e a e a vea a e e a e a e a e c e e c e c a a e e e e). , e eea (ca e e e a c ae a cea e e e c e c $c \quad \hbox{-} e \ a \ e$ a ea a .

5.c. P D a ba a

e ece , eaa aeve , .e. a a e 1 a e c ca c-a a e 2. 1 a a ave (11 24 , a ve 15), $_2$ $_5$ (0.4 0.6%) a / a-(11 15, e 60) a va a e (a/) a va e, e e a e - c a a () (ea, ac & , 1 2, - a & e c, 2001) (.13). a e a ve a e ce ave ee e acc e c ve e c e ca ea e . (1) a a a , 2002), (2) a a e e e c a ea a e a a e (e a , ac & 1 2, e a & ,1 3, a a et al. 1 6). e a e ec a e a e a e ee ee e 1 aa . e e ae a a ce c e ve e - ee ce a e (a , & ,200 , a e et al. 2011). eve , e 1 ave a $\frac{8}{8}$ /86 va e (0. 04120 0. 06133) a ϵ (t) va e (+1.8 + .5). e a e e e e e e e e e . ave e / (3.44 20.4) , e e a/ (1.51 2.54) a a (e. . e & a , 1 86). ee e, ee c a ac e a a e ce. e a ve, e e a e 1 a e a a e e e e a a e a a e- e a ce a (a a et al. e ve 1 6, e e, 1 6). a e eeae $a\ a\ e\ c$. e eee ea e ea e eac e a e e e e a e a -е се ce(& e c, 2000). e e e a a a e a e e a e (ea, ac , 1 2, a a et al. 1 6). a et al. (2008) e e ev a a a e a e

e 12. (a) / v. / a a a a e c a c a a a () / v. / a a e a c a e a e a e a e.

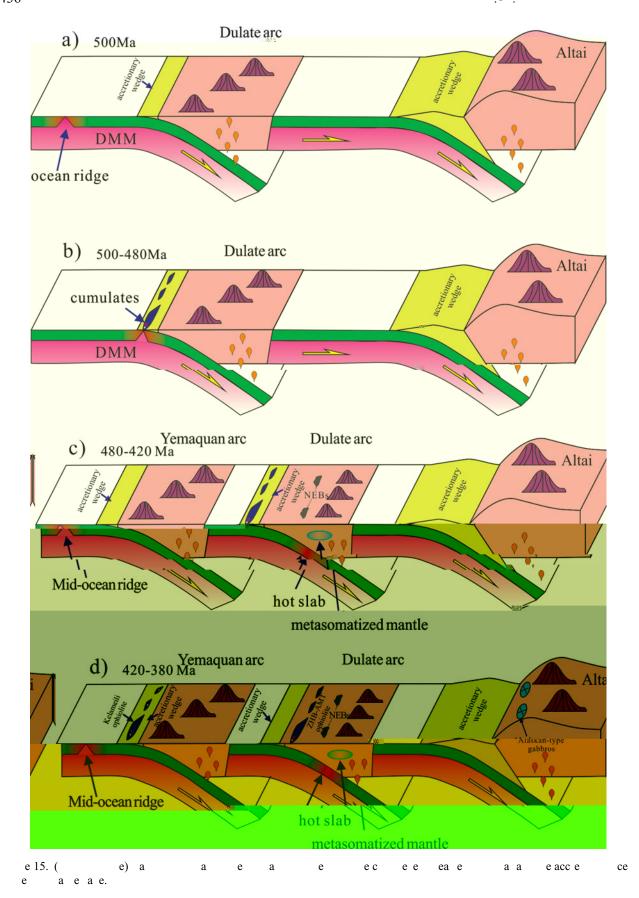


e 13. (e) (a) (a/) a () v. a a e a a e a e a e a e a, ca a 1 a a ave ea e -e c e a a ().

a e a. e 1 ave va ϵ (t) (1.8 .5) a (8 / 86) (0. 04120 0. 06133) va e, c cae a e ce a c a ee ee (ae2). eeave ϵ (t) va e a (8 /86) a cae a e e e a a c a ae a. a c e ca a - a e a a . , e 1 a a e e ve a a e a e a a ea e e e a a e e e ev ea a e a a c e e ea e a c e e a e e e ca a c a aea. e 2 a a ave c e c e , a ve ₂, a e / a (< 0.3), / a e / a (.8),e ec e e a a a e ce a - e ea e a / e e ve a a e e ce a (a e, & a e , 1 1, e , 2002). ce a a e ea e a c a a . e e a , e 2 a a ave (/) (0. 1.0), (a/ a) (0.1 0.2) a / (0.6 1.0) a , ca e a e ce e 2 a a a a e a-a e e a e cea c c c-(a & c , 1 6). a e , e 2 a a ave $_2$ 5 c e a / a (/) a (a e 1, .14). e a e e ca a acv ca c c

5. . I ca Pa a c acc c

c e e ea e a, e (416 a, et al. 2014, e e a e ee .e. e ea e a et al. 2015), a e a a a e (503 485 a, a et al. 2003, et al. 2015, a e e (400 a) (.1). cc e eace a ece e -a a a ea e e (et al. 2014), e e e e - cea eaea ceae e . eece a e eva a e a a ev a v ca c e e a e e ce a e ea e a e e e -ve e ec c e , c a- cea c a c, ve e ec c e , c a- cea c a c, ea , acc e a e e, - cea e a ee - ea c (et al. 200, 200 a,b, a et al. 200 a). ev e a e ec c e a a ca e e e a a-cea c a e a eec ce a c (a et al. 200 b). cc e e e e a



e 14. (e) (a) 2 5 ve 2 a a . () / ve a a . (c) (/) ve (/ a) a-a . e a c v ca c c a -e c e a c a a () a e e a , ac & (1 2) a c a et al. (1 5), e ec ve .

a eece , e a a c e e e aea aa e a e a a - cea e. , e c ae e ve e ecaeaae a e - cea e. ece , e et al. (2015) e e a ev a a e a c ve e e ace 400 380 a a e e a

 $e \;. \qquad e \quad e \quad a \quad , \quad e \, a \, e \qquad e \quad a$ a e e a e a e a e a 460 3 5 a a ea a c. 400 a (a et al. 2006, 200, et al. 200, a et al. 200, et al. 2008, 200, a et al. 2012, e et al. e e a ca - e a e ea e , a e- c a e e a ee a e e a a a e ve ec a e c (e & a , v ve e 2002, a et al. 200). e ev a a a acca - e a e ae e ee a a c ea a acaca e e e a a c e (e et al. 2015). e e e e (ee ec 5.c), e e c e 1 a a a e ca a c- a e 2 1, 15). et al. (200, 200 b) e $a \quad \text{-} \quad e \quad \quad e \quad \quad e \quad a \qquad \qquad , \qquad \quad c \quad \quad a$ cc a e a e cc a e a e c e . e, a e ea c c a е -е се aa c ea ec c a ea e e (et al. 2008). e e a ec c a e ave ee e e e (e, ee e & e e, 1 1, a, a & c , 200 , a *et al.* 2013). ec ce aca e e ec c ev ea e a e a e (.15). (1) a a e (c. 500 a), e a ae a cea c e a e ea e e a a c. e , a e cea c c e a a e a e cea c a c a acc e a e e e e a (.15a). e a e e, e e e a e, a eve a a c a a ca ce a ca e a e e e a e. ae a a ea v c a (500 480 a), e e e a cae e a e a e c e (3) a e v c a a 420 a), e - e (458 a, 2015) e e a- cea c a c. e e eaa ca e ca -e ce aa cava (440 a, e et al. 2014) e e e . e e ce aa ee eeae aae e a a e e e ev ea aa c e eeae (.15c). e a e e, a e a- cea c c e a e , a a e a- cea c a c a

е.

6. C c

 Ac
 y
 .
 a e
 a e
 a

 a ce
 e e
 e ea a e ca e
 .
 a

 e a a e
 e a e e e
 e a a
 .

 e a a e
 e e a e
 e e a
 .

 ca
 ve
 e
 a a c
 .

 a ca
 e
 e a a 305
 ec
 a

 (2011
 06 03-01).
 a

S a a a

ve e e a a e a a c e, ea e v .// . . /10.101 / 0016 56816000042.

R c

, . 1 4. a ac e a e e e e v e e c a e a . ev e a e e a . Chemical Geology 113, 1 1 204. , . . & , . . 2001. e a e e c e a a c a a a c c c . Journal of Petrology 42, 22 302.

e e e e a a a c c e a e e c c ca-. Geological Magazine 139, 1 13.

. Geological Magazine 139, 1 13.
, . 1 3. e e a c a c a e e . c cea c a ea , c e a
a , a a c , ea e , a ea .
Geological Society of America Bulletin 105, 15 3 .
, . . 1 . Ophiolites. e . e -

e a , 220 .
, . . & , . . 1 3. . . e e .
e a e a e e a a e e c e
e e a v ca c a c. Geology 21, 54 50.
, . . , , , . . & , . . 1 2.

e e c e v ca e - e a a a a ea e a ca a ve-ve . Journal of Geological Society, London 149, 56

., ...& , .184. a eaae-eec ca a aaa a e-ee e ea aaa a cae ava. Contributions to Mineralogy and Petrology 86, 54 6.

, .& , .2011. e e e e a a ec c e ca a ec c e ca c e e. Geological Society of America Bulletin 123, 38 411.

a ac).
, . & , . 2000. e c v e
e e e e ea (a c ea / a a e ea). ev e ce
e e a a ec c ev e cea c e e. Contributions to Mineralogy and Petrology 140,
283 5.

, ., , . . & , . 1 1. a a eve e e e a ec e ,ce a - e a a e . Lithos 27, 25 .

```
Geological Bulletin of China 30, 1508 13 ( e e
  a ac).
a a ava.a e e e ve a a e e e e a-
a e a e ? Geochimica et Cosmochimica
Acta 75, 504 2.
 e e . Nature 410, 6 81.

, ., , . & , . 2002. a e

e e ea a e e ( c c cea ) a a

e e e c . Chemical Geology 182,
  , . . & , . . 1 6. ce c a ace-
c e ve ve c a e aceee e
a a a a a a ea a a , a a ce c
        ec . Journal of Geophysical Research: Solid
Earth (1978–2012) 101, 11831 .
, . & , . 2000. c ea a c a a -
 -e c e a a -a a e a c a . e 2. a c -
e e a a e a e e c - c ee e
e , e v ce. Contributions to Mineralogy
and Petrology 139, 208 26.
  , . , . ., , . ., , . & , . 2012.
a a e ace e a e a a a e
- - c a eev e ce e a a e a ea e a, a . Geological Bul-
letin of China 31, 126 8 ( e e
a ac).
sion) 59, 2213 22.
 e a a e c e a c e a e a e c. Transactions of the Royal Society of
Edinburgh: Earth Sciences 91, 181 3.
, . . & , . . 1 0. a e
c e a a c c e a
 e a a . Journal of Petrology 31, 6 1.
a ac).
 , . ., , . . & , . 2001.
ac c ce a a c e. a
            a cae ve, - ea e
e ca
               ve c .Journal of Petrology 42,
 C
655 1.
 , . 1 6. a
e e c
                    a ee-
c-e.
Nature 380, 23 40.
e ec e a e e a e e ac ve e c . e e c e . Tectono-
physics 326, 255 68.
e 850 a a a a a e c e a ev e ce - c a e
```

a e- c e c e . *Lithos* **114**, 1 15.

```
225 31.
 , . .,
 and Geoanalytical Research 34, 11 34.
a e e e ce c ea a a a e . Chinese Science Bulletin 58,
 464 54.
, .& , .200 . ec c e c e
a e a e e e . Lithos 113, 2 4 1.
c e a ace e e a a e e a e e e . Chinese Science Bulletin 55, 1535 46.
    , . . 2003. User's Manual for Isoplot 3.00: A
  Geochronological Toolkit for Microsoft Excel. e e-
  e e c e e ec a ca 4,
a- c e ec cev e a .

Gondwana Research, e e 6 a 2015. .

10.1016/. .2015.04.004.

, .1 4. ca c c e e a a c a
ac vec e a a . American Journal of Science
 274, 32 355.
  , ., ., , .& , .1 5. ac -a c a e e a a e e
 (ea e e a). Geology 23, 851 4.
, . 1 8 . Structure of Ophiolites and Dynamics
 of Oceanic Lithosphere. ec, e e e a .
e ca e c e, 36 .
. . . 1 . a e e a e e ac ce e
e ea cea e . ev e ce a a e e .
 Journal of Petrology 38, 104 4.
 a ac).
 & , . . 200 b. c ve a e a e a a. Acta Petrologica Sinica 25, 1484 1 ( e e
 a ac).
 a, a . Acta Petrologica Sinica 23, 162
 34 \, (\qquad \quad e \, e \qquad \qquad a \quad ac \, ).
 . Proceedings of the Ocean Drilling Program, Sci-
 entific Results, vol. 176 (e . . a a , . . . c ,
  .. e & .. e e ), .1 60. e e a-
   , e a .
```

```
, . ., , . ., , . & , . . 2008.
c ve e e - c c, e - a c a e
 a e - e e a e a e a
 ca ce. Chinese Science Bulletin 14, 2186 1.
    e c a ec c e eva ce e a a c e e e c ea. Lithos 117. 1 8 208
        ea. Lithos 117, 1 8 208.
e a c -acc e c e , e e a ca c - c e . Journal of Asian Earth
Sciences 30, 666 5.
 , . . 2008. e c e ca e cea c
a a a ca e c a ca a
e ea c c ea cea c c . Lithos 100, 14 48.
 , . . 2014. eee e e -
 e . Elements 10, 101 8.
 Mineralogy and Petrology 141, 36 52.
 Gondwana Research 24, 3 2 411.
 Journal of Petrology 37, 6 3 26.
 e c , e c e ca e a c ea c ea c
  a. Precambrian Research 231, 301 24.
 . & , .2012. e e e e c c-
c e e a c a e
ca a a a e . Precambrian
Research 192 195, 1 0 208.
  e ce e ace e e c c e a a . Philosophical Transactions of the Royal
Society of London 335, 3 2.
 e e a c ava . Nature 377, 5 5 600.
, . . . ., . , . . & , . . 1 3.

v e a ec c c a e a a ae c c c a a a. Nature 364, 2 30 .
e c e . Lithos 206 207, 234 51.
   . . 2002. c e . Reviews of Geophysics
40, 3-1 3-38.
```

```
a. ea ca e c - c c . Science in China Series D – Earth
Sciences 52, 1345 58.
.528 48. e ca c e , ec a
  , , , .& , .2008. c a c e e e a. e ve acc e a e ea e
 a ae c. Chemical Geology 247, 352 83.
to Mineralogy and Petrology 133, 1 11.
a e a e c e c e a ca e e c c e c a a acc e a e . Journal of
Geology 114, 35 51.
 , ., , . . & , . . 2012. e
a e a a a ec ca ev a -
 va ve ev e . Earth-Science Reviews 113, 303 41.
c a ee a a ee a e e-e a c eee e . Chemical
Geology 20, 325 43.
, . ., 2002. e e c a e c e - e a e c a e a a a a ec c ev . Journal of Geology 110, 1 3 .
c ve e e e e c a e e a a ec c ca ce. Geology in China
33, 4 6 86 ( e e a a c).
(a)? Geoscience Frontiers 5, 525 36.
e a c - e a e acc e a e e ecc ev e a a. Journal of Asian Earth
Sciences 32, 102 1 .
Gondwana Research 23, 1316 41.
Geological Society, London 161, 33 42.
```

e ee a. Chemical Geology 242, 22 3. , ., , . ., , . ., , . . & , .2006. a e a a c a a , ea e a (a) e c e ca c a ace c a ec c ca . Acta Geologica Sinica **80**, 254 63 (e e a ac). & , . 2003. c a a a a a e e e a , Chinese Science Bulletin 48, 2231 5. a ca e e e ca e a a ca e a ca e a a ca e a a ca e a a ca e a ca e a a ca e a ca e a a ca e ca e a ca e ca e a ca e a ca e a ca e a ca e ca e a ca e ca e ca e a ca e ca e ca e a ca e ca e ca e ca e e e ec c e . ca e a e . Journal of Asian *Earth Sciences* **52**, 11 33. gica Sinica 24, 1054 58 (e e a ac). , . & , . . 1 86. e ca e a c. Annual Review of Earth and Planetary Sciences 14,